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Abstract. The n-vector model of a thin film with free surfaces and Kac-type interactions is 
solved exactly. In zero field the system undergoes a phase transition of ‘classical’ type and, 
as conjectured by Costache, the critical temperature is independent of n. Unexpectedly, an 
examination of the n -* 00 limit yields a generalized spherical model and not the ordinary 
spherical model. Although investigated for purposes of comparison, the ordinary spherical 
model is shown to be distinguished in that the distribution of the magnetization across the 
film can be calculated explicitly in a vanishing field. Moreover, in the bulk limit, as the width 
of the film becomes unbounded, the total magnetization of this spherical model depends on 
the boundary conditions. 

1. Introduction and summary 

Mean field theory has provided valuable insights into the understanding of phase 
transitions in ferromagnetic systems. Since the theory is properly a long-range theory, 
its predictions are of course insensitive to the geometry of the system. A simple way to 
overcome this problem for lattice models is to assume that the interaction matrix 
separates into a direct product of a long-range interaction matrix and a short-range 
interaction matrix. The long-range matrix then guarantees the tractability of the 
problem while the short-range matrix allows the introduction of geometrical structure. 
For purposes of exposition only we will consider the simplest possible geometry, a 
two-dimensional N x M square lattice. The ensuing analysis immediately extends to 
three- and higher-dimensional cubic lattices, which are finite in one direction, with 
exactly the same results; we are thus concerned with models of ferromagnetic thin films. 

The interaction energy for the n-vector model of the system is 

where the n-dimensional spins Sir have norm 

On a cubic lattice i would be a lattice vector indicating the in-plane position and t would 
indicate the layer. Here we only explicitly consider a square lattice so that i simply 
indicates the column and t the row. Since we will be primarily concerned with a 
comparison with the corresponding spherical model we will assume parallel external 
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fields of order n 'I2 (e.g. H, = n 1/2Hr@. The n-vector 
(p = l / k T )  

Z, = A iNM J . . . J dNMS exp(-PX,) 
I!& II = n "2 

with the normalization constant 

A, = (2~~ /2n(n-1 ) /2 / r (n /2 ) .  

partition function is given by 

(1.3) 

The spherical model of the same system has the interaction energy 

Here the NM scalar spins are subject to the spherical constraint 
N M  xs;=NM. 

i = l  1=1 

The spherical partition function is given by 

Z s p h  = A& / . . . / dNMS exp(-PXsPh). 
E., E, S;=NM 

In these models we assume that the interaction parameters are ferromagnetic and of 
the Kac form (Kac and Helfand 1963) 

pij = Y P ( Y I ~ - ~ I ) ~ O ,  (1.8) 

A,  =&,s +T(ar,s-l+&.s+l)r O S T C i ,  (1.9) 

that is, each spin in the lattice interacts with the spins in its own row and, to a weaker 
extent, with the spins in the two adjacent rows. The matrix p is the long-range 
interaction matrix with y the inverse range. The form (1.9) for the short-range 
interaction matrix A is not essential but is assumed for mathematical simplicity. On a 
higher-dimensional partially finite lattice the long-range interaction needs to be 
suitably rescaled by factors of y (see Thompson and Silver 1973). For M layers 
arranged on a simple cubic lattice, for example, the long-range interactions would be of 
the form pi, = yzp(yli  -]I), where i and j are in-plane lattice vectors. 

The long-range limit (y  + 0) must be taken after the thermodynamic limit. The 
limiting free energies then are given respectively by 

-p$,, = lim Iim (MM)-' In z,, 
y + O + N - a  
(M fixed) 

and 

(1.10) 

(1.11) 

The interactions (yp (0) and yp(O) ) ,  specified by (1 3) and (1.9) between spins in the 
same column do not contribute to the free energies (1.10) and (1.1 1) in the long-range 
limit. Since the value of p(0)  is immaterial we assume that it is sufficiently large to ensure 
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that the matrix p is positive definite. In addition we will assume that the sum 

m 
d o ,  Y ) = Y  c P(Ylil), (1.12) 

i=-m 

over an infinite row, exists for all y > 0 and that 

exists (as a Riemann integral). In particular one could have p(x)= J exp(-x), as 
considered by Costache (1975), in which case g(O)= 2J. 

The layout of the remainder of the paper is as follows. 
Our first result is presented in 8 2. We show that, under the above assumptions on 

the interactions, the limiting n-vector free energy (1.10) is given by 

(1.15) 

and I, is a modified Bessel function of order p. The minimum in (1.14) is attained for a 
solution of the system of equations 

M 

s = l  
m, = s , (ps (o )  Aums + P H ) ,  t = ~ 2 , .  . . , M ,  (1.16) 

where 

s n  (x = 4 h(x ) / d n  (x 1 = It n (U ) / I i n - *  (U )* (1.17) 

The minimizing solutions m, of (1.16) are the layer (or row) magnetizations and the total 
magnetization is 

(1.18) 

In § 3 the thermodynamic and critical properties of the n-vector model are briefly 
described. In particular, it is shown that for zero field (H, = 0) and for sufficiently high 
temperatures, 

kT> kT, = g (O)[ 1 + 27 cos( &)I, (1.19) 

there is only the trivial solution m, = 0, t = 1,2, . . . , M, of (1.16) corresponding to a 
state of zero spontaneous magnetization. T, is identified as the critical temperature and 
is independent of n as conjectured by Costache (1975). 

The n -00 limit of the n-vector free energy (1.14) is evaluated in 0 4. We find 

(1.20) 
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(1.21) 

(1.22) 

where the function 9w is defined by (cf (1.14) and (1.15)) 

In yW(x)= lim n-l In ~ n ( x ) = ~ { ( 1 + 4 x 2 ) 1 ~ 2 - ~ - ~ n t [ l + ( 1 + 4 x 2 ) 1 ~ 2 ] } .  
n-m 

The layer magnetizations are solutions of (cf (1.16)) 
M 

mt = gm( MO) c + p a ) ,  t = 1 , 2  ,..., M, 
s = l  

(1.23) 

where 

2x (1.24) 1 +(1 +4x2)1/2' 
.FW(x) = lim Sn ( x )  = 

n-w 

Contrary to expectation, the free energy (1.21) does not agree with the spherical 
model free energy, obtained in zero field, by Costache (1975). This surprise discovery 
demands a close scrutiny of the spherical model. This is done in 0 5 where we show that 

In zero field this reduces to (cf (1.21)) 
M 

~4~~~ = -max[ t P g ( o w 1  c mAA,ms + t  In 
m, r,s = 1 

77<1 
i(1- T +In T ) ,  77>1 

with 

(1.25) 

(1.26) 

(1.27) 

The layer magnetizations are again the mr that minimize the free energy. It is an 
extraordinary feature of the spherical model that the layer magnetizations can be 
calculated explicitly in a vanishing field. The result is 

T < 1  
(1.29) 

Notice that the onset of spontaneous magnetization occurs at exactly the n-vector 
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critical temperature (1.19). More importantly, observe that in the bulk limit the 
magnetization is given by 

81/2 

q > l .  1 M  -1 1 /2  lim -1 mf=- ( l -q  ) , 
M-w M f = l  5r 

(1.30) 

This differs from the bulk value for periodic boundary conditions by the factor 81/2/rr, 
reflecting the dependence of the distribution of magnetization on the boundary 
conditions. 

The discrepancy between the n +CO model and spherical model arises because the 
interactions are not translationally invariant (i.e. the matrix A is not cyclic). Transla- 
tional invariance figures prominently in the proof of the equivalence of these two 
models given by Kac and Thompson (1971). Although the Kac and Thompson theorem 
is not applicable an appeal can be made to the counterpart, for non-translationally 
invariant interactions, given by Knops (1973). Knops asserts that in the n +CO limit the 
n -vector model approaches a generalized spherical model in which the single spherical 
constraint (1.6) is replaced by multiple spherical constraints. In § 6 we show that the 
n + 00 model is actually an M-spherical model (Bettoney and Mazo 1970) in which the 
single spherical constraint (1.6) is replaced by the it4 constraints 

N 1 S ; = N ,  t = l , 2  ) . . . ,  M. 
i = l  

(1.31) 

We remark finally that the failure of the Bettoney and Mazo theorem, stating the 
equivalence of the M-spherical model to the ordinary spherical model, is also due to the 
fact that the matrix A is not cyclic. 

2. The n-vector model 

In this section we derive the n-vector free energy (1.10) 

We adopt the coalescing bound method of Thompson and Silver (1973, to be referred to 
as TS) and refer the reader to their paper for most of the details which we prefer not to 
duplicate here. 

The eigenvalues of the matrix A are given by 

Thus for 0 C 7 S 4 the matrix A is positive definite. As a consequence the direct product 
matrix p @ A  is positive definite. We rely heavily on this fact in the sequel. 

To obtain an upper bound we begin by imposing the semi-periodic boundary 
conditions 
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so that (see (1.12)) 

The n -vector Hamiltonian (1.1) can now be written as 

,x,,=-$ 1 p g t , ( ~ i t - n ” 2 m ~ . ( ~ , ~ - n ” 2 m ~ + t n ~ g N ( ~ , y )  mAQms 
N M  M 

i . j= l  t.s=l t.s = 1 

N M  M 

i = l  t-1 s-1 
- n ‘I2( g N ( 0 ,  Y) 1 Arsms +H;)A* Sir, 

where the values of the m, are arbitrary. Recalling that the matrix p @ A  is positive 
definite, we obtain an immediate bound on the partition function (1.3): 

zn 3 exp( - $npNgN(o,Y) c m ~ t , m s )  

x A iNM[ . . . I dNMS exp[ 

M 

l .S = 1 

N M  M 

i = l  r = l  s = l  
1 IZ ‘I2( / ? g N ( o ,  7 )  1 Aums +pH;)A. Sit] e 

(2.6) 
Ipldl=n ’’’ 

Evaluation of the integrals (TS, equation (2.11)) and the taking of limits then gives the 
desired bound on the free energy (1.10) 

where g(0)  is given by (1.13) and $,,(x) by (1.15). 

representation (TS) for the partition function 

2, = (23r)-NM“’Z(det p)-””(det 

To obtain the reverse inequality, with suitably chosen mr, we start with a well known 

N M  

iJ= 1 f.s = 1 

W W 

dNMx exp(-$ 1 1 pilA-’ IS Xi1 Xis IX 

This formula is valid because the matrices p and A are positive definite. Imitation of the 
procedure in TS now leads readily to the inequality 

2, C ( 2 ~ ) - ” ~ ‘ ” ~ ( d e t  p)-M”’2(det A)-”’” 
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where z is chosen to make the quadratic form in the simple Gaussian integral positive 
definite. With the long-range limit ( y  + 0), after the thermodynamic limit (N+ a), we 
will take z + g(O)+. 

It can be shown, as in TS, that in the final limit only the maximized term in (2.9) 
contributes to the bound. Moreover, the maximum in (2.9) is attained for Xi ,  = x t  a 
solution of the stationary condition 

(2.10) 

where 5Fn(x) is given by (1.17). Using the actual form (1.9) of the matrix A in (2.10) it 
can be seen, by a recursive process, that the maximizingx, are mutually parallel. Setting 

(2.11) 

we obtain from (2.9) our final bound on the n-vector free energy (1.10) in the form 

(2.12) 

This establishes the equality (2.1). 

(2.10)) now have the scalar form (cf (1.16)) 
To investigate the layer magnetizations we notice that the stationary equations (cf 

(2.13) 

The magnetization (in the direction of the field) of row 2 is defined by the ther- 
modynamic average 

N 
lim lim (L 1 sit) . ri 
Y - o N - ~  Ni=1 

To evaluate this average we calculate the derivative (see (1.10)) 

(2.14) 

(2.15) 

Differentiating (2.1), using (1.17) and (2.13) we conclude that the magnetization of row 
t is n ”2mt. That is, m, is the normalized layer magnetization. The scaling factor n 
guarantees finite normalized magnetizations (i.e. solutions of (2.13)) in the limit n + W. 

We will return to this matter in 0 4. 
The total magnetization (in the direction of the field) is ddfined as 

(2.16) 

In a uniform field (Hg = H) this is precisely the derivative 

- a + n / a ( l ! W ) *  (2.17) 
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This establishes that 

(2.18) 

is the total normalized magnetization. 

3. Thermodynamics and critical behaviour 

The behaviour of the n-vector system is determined entirely by the equations of state 
(2.13). Unfortunately these coupled transcendental equations for the layer magnetiza- 
tions cannot be solved explicitly. Nonetheless, it should be possible to establish the 
existence of a phase transition in zero field with classical singularities for the magnetiza- 
tion and susceptibility. Since the behaviour of the n -vector system is exemplified by the 
king system we will not deliberate on these matters here. The interested reader is 
referred to Angelescu et a1 (1972) where the Ising case is studied extensively. With 
considerable effort they also prove certain properties (e.g. symmetry and concavity) of 
the distribution of magnetization across the film. A similar situation prevails for the 
closely related equivalent-neighbour model of Falk and Ruijgrok (1974) (see also 
Thompson 1974). 

To determine the critical temperature we show that for sufficiently high tempera- 
tures, 

kT > kT, = g(O)[ 1 + 27 cos( &)I, 
there is only the trivial solution m, = 0, t = 1, 2, . . . , M, of the equations of state (2.13) 
in zero field. The equations (2.13) can be written in the matrix form (v = pg(0)) 

A-'lm) = IP,,(vm)) (3.2) 

where the state vector 

Im) = (ml, m2,. . . , mM) 

I@fl(vm)>=(@n(z", Z,(z ."z) ,  . . . , @"(vmM)). 

(3.3) 

(3.4) 

Clearly (m)=O is always a solution of the equation (3.2). But suppose Im)#O is a 
solution of (3.2) for T >  T, given by (3.1), that is from (2.2), vAl < 1 where A l  is the 
maximum eigenvalue of the matrix A. Then forming inner products in (3.2) we obtain 

and 

The inequalities result respectively from the minimax principle, the Cauchy-Schwarz 
inequality and the modified Bessel function inequality 

l ~ f l ( x ) l =  l4fl(n4/~$fl-dn4l 1x1. (3.6) 
The inequality (3.5) contradicts the assumption vA C 1 and hence / m )  = 0 is the only 
solution of (3.2) for T >  T,. 
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For T < T, the situation is more complicated and indeed there are many solutions 
of the equation of state (3.2). To complete the identification of T, as the critical 
temperature, though, it should be shown that the absolute minimum of the free energy 
functional (2.1), for T <  T,, occurs for a non-trivial solution of (3.2). This program has 
been carried out for the prototype Ising system by Angelescu et a1 (1972), who 
furthermore isolated the unique (non-trivial) ferromagnetic (m, 3 0, t = 1,2,  , . . , M> 
solution as the minimizing solution determining the distribution of magnetization. This 
course will not be pursued here for the n-vector model. Instead we will return to these 
matters for the tractable and more transparent spherical model in § 5. 

To evaluate the free energy 

= Iim n-’ll/,, 
n + j o  

we use the asymptotic formula (Pearce and Thompson 1976) 

lim n-l In 9 n ( x )  = ${(I + 4 ~ ~ ) ” ~ -  1 -In $[1+ (1 + 4 ~ ~ ) ’ / ~ ] } .  
n +m 

From (2.1) it follows that ( U  = pg(0)) 
M 

m,Arsms - 1=1 ((1 + 4 . ~ : ) ’ ~ ~  - 1 -In $[ 1 + (1  + 4 ~ ? ) ” ~ ] } ) ,  

with 
M 

z,  = U Arsms +/?HI. 
s = l  

The expression (4.3) to be extremized can be somewhat simplified (Pearce and 
Thompson 1977). We show that 

M M M 1 
P ~ L = - m a x  l m t l s l  -($v M r,s=l 1 mlAlsms+p 1 = 1  1 H,m,+i  , = l  ln(1-m:)). (4.5) 

The demonstration relies on the fact that the extremum in (4.3) occurs for a solution of 
the equations 

221 

1+(1+4z?)’/*’ 
m, = 

in conjunction with the fact that the extremum equations for (4.5) are 

m, 
21 =- 

l - m f ‘  (4.7) 

The roots of the latter equations (4.7) in the range lm,/ S 1 are given precisely by the 
former equations (4.6), that is, 
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The equivalence of (4.3) and (4.5) is now established straightforwardly by using the 
relations: 

---- 2 -  'I -$[1+(1+4~:)'/~], 
l - m ,  m, (4.9) 

r,s = 1 r = l  r = l  

It is immediately apparent, by differentiating (4.5) with respect to the field Hr, that 
mr is the magnetization of row t. Moreover, the magnetizations can be obtained from 
the normalized n -vector magnetizations (2.13). This is verified by the formula 

(4.11) 

which follows readily from the modified Bessel function identity (Abramowitz and 
Stegun 1964) 

(4.12) 

Although it would be desirable to study the equations of state (4.7) numerically, we 
bypass this concern here and, for the sake of comparison, immediately investigate the 
spherical model. 

I,  - 1 ouc ) -I,+ 1 (PX = 2x -lI, ouc ). 

5. The spherical model 

The derivation of the spherical model free energy proceeds along very similar lines to 
0 2. For the sake of completeness, however, it is given here. The result to be proved is 

The spherical model interaction energy (1.5) can be recast as 

Discarding the first term leads to a bound on the partition function (1.7): 

M 

r,s = 1 
z s p h  exp( -4/3NgN(O, 7 )  mArsms) 
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After evaluating the integral (TS, equation (2.11)) we ultimately obtain 

fi+kphs3Pg(O)M-' c mtArrms - lim (m-1 ln $"M~(M-' C" 2:) 2) 
with 

M 1/ 

(5.4) 
t.s=l N-rm t = l  

(5.5) 

The functional integral representation (TS) for the spherical partition function (1.7) 
is 

It follows that for large enough z (z > g N ( o ,  7 ) )  

Z S p h  S (2~)-"~/'(det p)-M/2(det 

Again only the maximized term contributes to the bound in the final limit. Moreover 
the maximum occurs for xir = x,, i = 1,2, . . . , N. Setting 

and taking into account (5.4) we deduce finally that (remember z + g(O)+) 

(5.9) 
Appealing to the asymptotic formula (4.2) we obtain the general expression (5.l)for 

the spherical free energy. The magnetization in row t for the spherical model is now 
given by 

(5.10) 

As before, comparison of the derivative with the stationary equations for (5.9) identifies 
m, as the magnetization in row t. 
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In zero field the free energy assumes the simple form (v = pg(0)) 

(5.11) 2 2 1 /2  r,A ilrs - (1 + 4 ~ ~ r ~ ) ” ~  + 1 + In ;[ 1 + (1 + 4v r ) 1) 

where 
M 

r, = W 1 I 2  Arsms 
s = l  

and 

(5.12) 

(5.13) 

The minimum is attained for a scalar multiple of the normalized principal eigenvector of 
the matrix A, that is, 

r, = r( M+1 T) -1/2 sin( -) fT . 
M +  1 

The free energy is consequently given by 

@,bsph = min ${vAr1r2- (1 +4v2r2)1/2 + 1 +In $[l+(1+4v2r2)1’2]} 
I 

= ( y V + l n T ) ,  q > 1  
q < 1 ,  

where 

77 =Pg(O)A1, 

with the principal eigenvalue of A (cf (2.2)) given by 

A l  = 1 +27 cos( -) ?r 

M +  1 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

The Curie-Weiss form (5.15) for the zero-field spherical model has been obtained 
by Costache (1975) using a steepest-descents method. A distinct advantage of the 
present method is that it allows for the calculation of the layer magnetizations. From 
(5.12) and (5.14) the layer magnetizations are given by 

where r minimizes (5.15), that is (Pearce and Thompson 1976) 

77>1 
q e 1. 

(5.19) 

(5.20) 

We conclude that the distribution of magnetization across the film in zero field is 
sinusoidal and given by 

(5.21) 
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with 

q = pg(o)[ 1 + 27 cos( M +  "->I 1 (5.22) 

Notice that the distribution has the expected symmetry and concavity properties. 
The total magnetization is given by 

In the bulk limit, M +  00, the sum is replaced by an integral and the bulk magnetization 
below T, is 

M g1/2 
-1 1/2 mo= lim M-' 1 mr=-( l -v  ) . 

M-m t = l  l r  
(5.24) 

This is remarkable because if the free boundary condition is replaced by periodic 
boundary conditions the matrix A becomes cyclic; the equation (5.14) becomes r, = t 
and clearly the bulk magnetization is given by 

(5.25) 

The bulk magnetization is thus seen to be sensitive to the boundary conditions. A 
similar phenomenon has been observed by Kac (unpublished) for the Bose gas 
concerning the single-particle distribution function. 

6. The M-spherical model 

The M-spherical partition function is given by 

ZM =AGM . . . dMNS exp(-PXsph) 
1y-1 Sf,=N 

where X s p h  is the spherical interaction energy given by (1.5). We will show that the 
M-spherical free energy +bM satisfies 

where GM is defined by 

and is given by (1.21)< 
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Repetition of the arguments presented in the previous section for the spherical 
model, with the appropriate replacements for the configurational integrals, leads to 
coalescing bounds establishing the equality 

Atsms +pH,)] .  

(6.4) 

P h  = min M.'[ $Pg(O) 1 mtAtsms - .f In Pg(0) Arms + p H ) ] ,  (6.5) 

proving that the n + 00 model considered in 0 4 is equivalent to an M-spherical model. 

M M M 

m, r,s = 1 N-bm r = l  s = l  
= min[ $Pg(O)M-' 1 mrArsms - lim (NM)-' c In &(Pg(O) 

The asymptotic formula (4.2) then establishes the desired result 
M M 

mt r , s = l  r = 1  s = l  
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